Аннотация к рабочей программе по предмету «Физика»

(7-9 классы)

Рабочая программа естественнонаучной направленности по физике с использованием оборудования центра «Точки роста» для 7-9 классов основной школы разработана на основе авторской программы «Физика. 7-9 классы. Рабочая программа к линии УМК А.В. Перышкина, Е.М. Гутник» / Н.В. Филонович, Е.М. Гутник, М.: Дрофа, 2017 и Методическими рекомендациями по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественнонаучной и технологической направленностей («Точка роста») (Утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № Р-6).

Программа обеспечена учебниками согласно списку (перечню) учебников, утвержденных в МОАУ «Твердиловская ООШ» на текущий учебный год:

- 1. Физика 7 класс: учебник / А.В. Перышкин; М.: Дрофа;
- 2. Физика 8 класс: учебник / А.В. Перышкин; М.: Дрофа;
- 3. Физика 9 класс: учебник / А.В. Перышкин, Е.М. Гутник; М.: Дрофа.

В соответствии с учебным планом школы на текущий учебный год на изучение программы выделено:

- в 7 классе -2 часа в неделю (68 ч),
- в 8 классе 2 часа в неделю (68 ч),
- в 9 классе 3 часа в неделю (102 ч).

В соответствии с программой в каждом классе предусмотрено следующее количество контрольных, лабораторных и практических работ:

Класс	7	8	9
Количество КР	7	5	6
Количество ПР	-	-	-
Количество ЛР	12	14,5	27

Программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся.

Создание центра «Точка роста» предполагает развитие образовательной инфраструктуры общеобразовательной организации, в том числе оснащение общеобразовательной организации:

1. оборудованием, средствами обучения и воспитания для изучения (в том числе экспериментального) предметов, курсов, дисциплин (модулей) естественнонаучной направленности при реализации основных общеобразовательных программ и

- дополнительных общеобразовательных программ, в том числе для расширения содержания учебного предмета «Физика»;
- 2. оборудованием, средствами обучения и воспитания для реализации программ дополнительного образования естественнонаучной направленностей;
- 3. компьютерным и иным оборудованием.

Базовый комплект оборудования обеспечивает эффективное достижение образовательных результатов обучающимися по программам естественнонаучной направленности, возможность углублённого изучения отдельных предметов, в том числе для формирования изобретательского, креативного, критического мышления, развития функциональной грамотности у обучающихся, в том числе естественнонаучной и математической.

Эксперимент является источником знаний и критерием их истинности в науке. Концепция современного образования подразумевает, что в учебном эксперименте ведущую роль должен занять самостоятельный исследовательский ученический эксперимент. Современные экспериментальные исследования по физике уже трудно представить без использования не только аналоговых, но и цифровых измерительных приборов. В Федеральном государственном образовательном стандарте (далее — ФГОС) прописано, что одним из универсальных учебных действий (далее — УУД), приобретаемых учащимися, должно стать умение «проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов».

Учебный эксперимент по физике, проводимый на традиционном оборудовании (без применения цифровых лабораторий), не может в полной мере обеспечить решение всех образовательных задач в современной школе. Сложившаяся ситуация обусловлена существованием ряда проблем:

- традиционное школьное оборудование из-за ограничения технических возможностей не позволяет проводить многие количественные исследования;
- длительность проведения физических исследований не всегда согласуется с длительностью учебных занятий;
- возможность проведения многих физических исследований ограничивается требованиями техники безопасности и др.

Цифровая лаборатория кардинальным образом изменяет методику и содержание экспериментальной деятельности и помогает решить вышеперечисленные проблемы. Широкий спектр цифровых датчиков позволяет учащимся знакомиться с параметрами

физического эксперимента не только на качественном, но и на количественном уровне. С помощью цифровой лаборатории можно проводить длительный эксперимент даже в отсутствии экспериментатора. При этом измеряемые данные и результаты их обработки отображаются непосредственно на экране компьютера.

В процессе формирования экспериментальных умений по физике учащийся учится представлять информацию об исследовании в четырёх видах:

- в вербальном: описывать эксперимент, создавать словесную модель эксперимента, фиксировать внимание на измеряемых физических величинах, терминологии;
- в табличном: заполнять таблицы данных, лежащих в основе построения графиков (при этом у учащихся возникает первичное представление о масштабах величин);
- в графическом: строить графики по табличным данным, что позволяет перейти к выдвижению гипотез о характере зависимости между физическими величинами (при этом учитель показывает преимущество в визуализации зависимостей между величинами, наглядность и многомерность);
- в аналитическом (в виде математических уравнений): приводить математическое описание взаимосвязи физических величин, математическое обобщение полученных результатов.

Переход к каждому этапу представления информации занимает достаточно большой промежуток времени. Безусловно, в 7—9 классах этот процесс необходим, но в старших классах это время можно было бы отвести на решение более важных задач. В этом плане цифровые лаборатории позволяют существенно экономить время, которое можно потратить на формирование исследовательских умений учащихся, выражающихся в следующих действиях:

- определение проблемы;
- постановка исследовательской задачи;
- планирование решения задачи;
- построение моделей;
- выдвижение гипотез;
- экспериментальная проверка гипотез;
- анализ данных экспериментов или наблюдений;
- формулирование выводов.

Последние годы у учащихся наблюдается низкая мотивация изучения естественнонаучных дисциплин и, как следствие, падение качества образования. Цифровое учебное оборудование позволяет учащимся ознакомиться с современными методами исследования, применяемыми в науке, а учителю — применять на практике современные педагогические технологии. Поэтому главной составляющей комплекта «Точкой роста» являются цифровые лаборатории.

Перечень оборудования ЦЕНТРА «ТОЧКА РОСТА»

- 1. Микроскоп цифровой.
- 2. Образовательный конструктор для практики блочного программирования с комплектом датчиков.
- 3. Образовательный набор по механике, мехатронике.
- 4. Цифровая лаборатория по физике.